先删缓存,再更新数据库
先删除缓存,数据库还没有更新成功,此时如果读取缓存,缓存不存在,去数据库中读取到的是旧值,缓存不一致发生。
解决方案
延时双删
为了避免更新数据库的时候,其他线程从缓存中读取不到数据,就在更新完数据库之后,再 Sleep 一段时间,然后再次删除缓存。
Sleep 的时间要对业务读写缓存的时间做出评估,Sleep 时间大于读写缓存的时间即可。
流程如下:
- 线程1删除缓存,然后去更新数据库。
- 线程2来读缓存,发现缓存已经被删除,所以直接从数据库中读取,这时候由于线程1还没有更新完成,所以读到的是旧值,然后把旧值写入缓存。
- 线程1,根据估算的时间,Sleep,由于 Sleep 的时间大于线程2读数据+写缓存的时间,所以缓存被再次删除。
- 如果还有其他线程来读取缓存的话,就会再次从数据库中读取到最新值。
sleep时间不好设置 建议异步串行化删除,即删除请求入队列
异步删除对线上业务无影响,串行化处理保障并发情况下正确删除。
先更新数据库,再删除缓存
更新数据库成功,如果删除缓存失败或者还没有来得及删除,那么,其他线程从缓存中读取到的就是旧值,还是会发生不一致。对于不是强一致性要求的业务,可以容忍。(不能容忍:比如秒杀业务、库存服务等。)
解决方案
消息队列
先更新数据库,成功后往消息队列发消息,消费到消息后再删除缓存,借助消息队列的重试机制来实现,达到最终一致性的效果。
问题
- 引入消息中间件之后,问题更复杂了,怎么保证消息不丢失更麻烦。
- 就算更新数据库和删除缓存都没有发生问题,消息的延迟也会带来短暂的不一致性,不过这个延迟相对来说还是可以接受的。
进阶版消息队列
为了解决缓存一致性的问题单独引入一个消息队列,太复杂了。一般大公司本身都会有监听 binlog 消息的消息队列存在,主要是为了做一些核对的工作。
可以借助监听 binlog 的消息队列来做删除缓存的操作。这样做的好处是,不用你自己引入,侵入到你的业务代码中,中间件帮你做了解耦,同时,中间件的这个东西本身就保证了高可用。
当然,这样消息延迟的问题依然存在,但是相比单纯引入消息队列的做法更好一点。
如果并发不是特别高的话,这种做法的实时性和一致性都还算可以接受的。
其他解决方案
设置缓存过期时间
每次放入缓存的时候,设置一个过期时间,比如5分钟,以后的操作只修改数据库,不操作缓存,等待缓存超时后从数据库重新读取。一致性要求不是很高的情况,可以采用这种方案。
这个方案还会有另外一个问题,就是如果数据更新的特别频繁,不一致性的问题就很大了。
为什么是删除,而不是更新缓存?
我们以先更新数据库,再删除缓存来举例。
如果是更新的话,那就是先更新数据库,再更新缓存。
举个例子:如果数据库 1 小时内更新了 1000 次,那么缓存也要更新 1000 次,但是这个缓存可能在1小时内只被读取了 1 次,那么这 1000 次的更新有必要吗?
反过来,如果是删除的话,就算数据库更新了 1000 次,那么也只是做了 1 次缓存删除,只有当缓存真正被读取的时候才去数据库加载。
结论:
总的来说更推荐先写数据库 再删缓存
● 实时一致性方案:采用“先写 MySQL,再删除 Redis”的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。
● 最终一致性方案:采用“先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。
xss